

# ASIGNATURA INTRODUCCION A LA INGENIERIA DE SISTEMAS

Semana No. 8 **TEMA:** INTERCONECTIVIDAD

## SISTEMAS NUMÉRICOS

Los sistemas numéricos son **formas de representar cantidades y datos** en matemáticas e informática.

En computación, los números se representan en diferentes bases

- 1. Binario base 2,
- 2. **Octal** base 8,
- 3. Decimal base 10,
- 4. Hexadecimal base 16

Son fundamentales porque:

Los computadores solo entienden el lenguaje binario (0 y 1).

Video de apoyo - <a href="https://www.youtube.com/watch?v=nQh0BiZFcmM">https://www.youtube.com/watch?v=nQh0BiZFcmM</a>

#### Conjuntos de números en cada sistema

- Binario (base 2): 0, 1
- Octal (base 8): 0, 1, 2, 3, 4, 5, 6, 7
- Decimal (base 10): 0, 1, 2, 3, 4, 5, 6, 7, 8, 9
- Hexadecimal (base 16): 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, A, B, C, D, E, F

#### **Principales Sistemas Numéricos**

- 1. Sistema Decimal (Base 10)
  - Es el sistema que usamos cotidianamente.
  - o Dígitos: 0 al 9.
  - $\circ$  Ejemplo: 356 (3×10<sup>2</sup> + 5×10<sup>1</sup> + 6×10<sup>0</sup>).

$$\circ$$
 3 x 100 + 5 x 10 + 6 x 1

**Docente:** Jaminton Asprilla A.



# 2. Sistema Binario (Base 2)

Usado por los computadores.

Dígitos: 0 y 1.

Ejemplo: Convertir de binario 1 0 1 1<sub>2</sub> a decimal

Posición 3 2 1 0

# 3. Sistema Octal (Base 8)

- o Dígitos: 0 al 7.
- o Se usa en programación y arquitectura de computadores.
- Ejemplo: 145<sub>8</sub> = 101
- o Posicion 2 1 0
- o 1 4 5
- $_{\circ}$  1×8<sup>2</sup> + 4×8<sup>1</sup> + 5×8<sup>0</sup> = 101 en decimal

# 4. Sistema Hexadecimal (Base 16)

- Dígitos: 0–9 y letras A–F (A=10, B=11... F=15).
- o Usado en programación, direcciones de memoria y colores en diseño web.
- o Ejemplo:  $2F (2\times16^1 + 15\times16^0 = 47 \text{ en decimal}).$

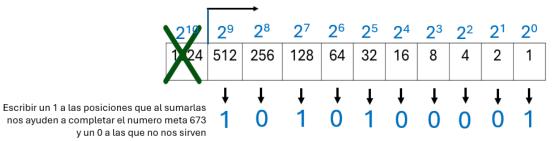


#### Tabla de equivalencias entre sistemas numéricos

| Decimal | Binario | Octal | Hexadecimal |
|---------|---------|-------|-------------|
| 0       | 0000    | 0     | 0           |
| 1       | 0001    | 1     | 1           |
| 2       | 0010    | 2     | 2           |
| 3       | 0011    | 3     | 3           |
| 4       | 0100    | 4     | 4           |
| 5       | 0101    | 5     | 5           |
| 6       | 0110    | 6     | 6           |
| 7       | 0111    | 7     | 7           |
| 8       | 1000    | 10    | 8           |
| 9       | 1001    | 11    | 9           |
| 10      | 1010    | 12    | A           |
| 11      | 1011    | 13    | В           |
| 12      | 1100    | 14    | С           |
| 13      | 1101    | 15    | D           |
| 14      | 1110    | 16    | E           |
| 15      | 1111    | 17    | F           |

#### **Conversiones entre Sistemas Numéricos**

- Decimal → Binario: dividir entre 2 hasta llegar a 0 y leer el residuo en orden inverso.
- Binario → Decimal: multiplicar cada dígito por potencias de 2.
- Binario ↔ Octal: agrupar los dígitos en grupos de 3.


**Docente:** Jaminton Asprilla A.



# 673<sub>10</sub> a binario

#### Conversión de decimal a binario – Ej.: 673 a binario

Encuentra la potencia de 2 mas grande que sea menor o igual al numero dado



Aquí sumamos las posiciones que tienen el numero uno así: 512 + 128 + 32 + 1 = 673

 $673_{10} = 1010100001_2$ 

## Ejemplo:

Decimal 673 → Binario: 1010100001<sub>2</sub>

Binario 1101 → Decimal: 13.

Binario 101101 → Hexadecimal: 2D.

#### Aplicaciones en Ingeniería de Sistemas

• Representación de datos en hardware y software.

• Direcciones de memoria en hexadecimal.

Colores en diseño web (#FF0000 = rojo).

Codificación de caracteres (ASCII, Unicode).

#### **Ejercicios**

1. Convierte el número 45 en decimal a binario, octal y hexadecimal.

2. Convierte el número binario 101110 a decimal.

3. Convierte el número hexadecimal **3A** a decimal y binario.

**Docente:** Jaminton Asprilla A.